3.24. PCA¶
[31]:
import conx as cx
import random
3.24.1. Non-Linearly Separable¶
[2]:
import math
[3]:
def distance(x1, y1, x2, y2):
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
[4]:
negatives = []
while len(negatives) < 500:
x = random.random()
y = random.random()
d = distance(x, y, 0.5, 0.5)
if d > 0.375 and d < 0.5:
negatives.append([x, y])
positives = []
while len(positives) < 500:
x = random.random()
y = random.random()
d = distance(x, y, 0.5, 0.5)
if d < 0.25:
positives.append([x, y])
[5]:
symbols = {
"Positive": "bo",
"Negative": "ro"
}
[6]:
cx.scatter([["Positive", positives],
["Negative", negatives]],
symbols=symbols,
height=6.0, width=6.0)
[6]:
[7]:
net = cx.Network("Non-Linearly Separable", 2, 5, 1, activation="sigmoid")
net.compile(error="mean_absolute_error", optimizer="adam")
[8]:
net.picture()
[8]:
[9]:
ds = cx.Dataset()
[10]:
ds.load([(p, [ 1.0], "Positive") for p in positives] +
[(n, [ 0.0], "Negative") for n in negatives])
[11]:
ds.shuffle()
[12]:
ds.split(0.1)
[13]:
net.set_dataset(ds)
[14]:
net.evaluate(tolerance=0.4)
========================================================
Testing validation dataset with tolerance 0.4...
Total count: 900
correct: 454
incorrect: 446
Total percentage correct: 0.5044444444444445
[15]:
net.dashboard()
[16]:
symbols = {
"Positive (correct)": "w+",
"Positive (wrong)": "k+",
"Negative (correct)": "r_",
"Negative (wrong)": "k_",
}
[17]:
net.plot_activation_map(scatter=net.evaluate_and_label(), symbols=symbols, title="Before Training")

You may want to either net.reset()
or net.retrain()
if the following cell doesn’t complete with 100% accuracy. Calling net.reset()
may be needed if the network has gotten stuck in a local minimum; net.retrain()
may be necessary if the network just needs additional training.
[18]:
if net.saved():
net.load()
net.plot_results()
else:
net.train(epochs=10000, accuracy=1.0, report_rate=50,
tolerance=0.4, batch_size=128, record=100)
net.save()

[19]:
cx.scatter(net.evaluate_and_label())
[19]:
[20]:
net.plot_activation_map(scatter=net.evaluate_and_label(), symbols=symbols, title="After Training")

[21]:
states = [net.propagate_to("hidden", input) for input in net.dataset.inputs]
pca = cx.PCA(states)
[22]:
symbols = {
"Positive (correct)": "b+",
"Positive (wrong)": "k+",
"Negative (correct)": "r_",
"Negative (wrong)": "k_",
}
[23]:
pb = net.playback(lambda net,epoch: cx.scatter(**pca.transform_network_bank(net, "hidden", test=True),
symbols=symbols,
title="Epoch %s" % epoch))
pb
[24]:
pb.goto("end")
[25]:
movie = net.movie(lambda net,epoch: cx.scatter(**pca.transform_network_bank(net, "hidden", test=True),
symbols=symbols,
format="image",
title="Epoch %s" % epoch),
step=1)
movie
[25]:
[26]:
def function(x, y):
outputs = net.propagate([x, y])
return outputs[0]
[27]:
cx.heatmap(function)

[28]:
cx.scatter(**pca.transform_network_bank(net, "hidden", test=True),
symbols=symbols)
[28]:
[29]:
matrix = [[-1 for i in range(50)] for j in range(50)]
for y in cx.frange(0, 1, 0.01):
for x in cx.frange(0, 1, 0.01):
hiddens = net.propagate_to("hidden", [x, y])
vector = pca.transform_one(hiddens, scale=True)
try:
matrix[int(vector[1] * 50)][int(vector[0] * 50)] = net.propagate([x, y])[0]
except:
pass
[30]:
cx.heatmap(matrix)

[ ]: